Unstable dimension variability and synchronization of chaotic systems
نویسندگان
چکیده
The nonhyperbolic structure of synchronization dynamics is investigated in this work. We argue analytically and confirm numerically that the chaotic dynamics on the synchronization manifold exhibits an unstable dimension variability, which is an extreme form of nonhyperbolicity. We analyze the dynamics in the synchronization manifold and in its transversal direction, where a tonguelike structure is formed, through a system of two coupled chaotic maps. The unstable dimension variability is revealed in the statistical distribution of the finite-time transversal Lyapunov exponent, having both negative and positive values. We also point out that unstable dimension variability is a cause of severe modeling difficulty.
منابع مشابه
N ov 2 01 0 Parametric evolution of unstable dimension variability in coupled piecewise - linear 1 chaotic maps
In presence of unstable dimension variability numerical solutions of chaotic systems are valid only 8 for short periods of observation. For this reason, analytical results for systems that exhibit this 9 phenomenon are needed. Aiming to go one step further in obtaining such results, we study the 10 parametric evolution of unstable dimension variability in two coupled bungalow maps. Each of 11 t...
متن کاملParametric evolution of unstable dimension variability in coupled piecewise-linear chaotic maps.
In the presence of unstable dimension variability numerical solutions of chaotic systems are valid only for short periods of observation. For this reason, analytical results for systems that exhibit this phenomenon are needed. Aiming to go one step further in obtaining such results, we study the parametric evolution of unstable dimension variability in two coupled bungalow maps. Each of these m...
متن کاملFinite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems
Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...
متن کاملUnstable dimension variability and complexity in chaotic systems
We examine the interplay between complexity and unstable periodic orbits in high-dimensional chaotic systems. Argument and numerical evidence are presented suggesting that complexity can arise when the system is severely nonhyperbolic in the sense that periodic orbits with a distinct number of unstable directions coexist and are densely mixed. A quantitative measure is introduced to characteriz...
متن کاملSynchronization of Chaotic Fractional-Order Lu-Lu Systems with Active Sliding Mode Control
Synchronization of chaotic and Lu system has been done using the active sliding mode control strategy. Regarding the synchronization task as a control problem, fractional order mathematics is used to express the system and active sliding mode for synchronization. It has been shown that, not only the performance of the proposed method is satisfying with an acceptable level of control signal, but...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
دوره 62 1 Pt A شماره
صفحات -
تاریخ انتشار 2000